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1. Background

In my work at MongoDB, I've been involved in a team that is adapting our replication protocol to
conform to the principles set out in the academic paper that describes the Raft algorithm(©nsar:
2019)Breaking with the academia's long standing obsession with Paxos, of which I'm yet to hear
about a robust real world and open source implementation, Raft describes a simple, easy to
understand leader based consensus algorithm. (In the vocabulary used outside of academia,
Raft describes a single-master, synchronous replication protocol using majority elections.)

Hence, while my original interest in Raft is purely work related, clearly it is meaningful to
consider Raft itself as a valuable contribution to the brittle art of making databases highly
available. As such, this paper is written purely within the context of Raft itself, without any
reference to the replication implementation in MongoDB, and ignoring the multitude of
differences that a MongoDB implementation will have compared to Raft. (One of which is
MongoDB being pull based, while Raft is a push based algorithm.)

This is the second version of this paper and supersedes its predecessor from a month ago,
which was called "Three modifications for Raft consensus". This version adds an explicit cluster
initialization step, hence making it four modifications. Adding the cluster initialization as an
explicit part of the algorithm, makes the description of the database id more straightforward. As
part of simplifying the creation of the database id, this paper no longer proposes the option to
automatically delete old data from a server - this was seen as a an unsafe operation by several
reviewers of the first version and therefore became cause for much unnecessary confusion'. For
the benefit of those who already read the previous version, the new and changed parts of this
paper are colored dark red.

| would like to particularly thank Oren Eini for his thorough review of the first version of this
paper and for proposing to codify the cluster initialization to a more explicit part of the algorithm.

' https://groups.google.com/forum/#ltopic/raft-dev/20GYyUmjRFY
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2. Introduction

The major contribution of the Raft authors has clearly been to finally introduce an easy to
understand, easy to implement protocol for distributed consensus. While more complicated
protocols may offer additional value in terms of feature set - such as supporting a multi-master
scheme - it is a valuable resource for the community of distributed databases to at least have a
robust alternative for the most basic kind of replication, leader based consensus. Somewhat
surprisingly, the level of elegance achieved by Raft has not been clearly documented
previously, let alone provided with proofs of correctness. The closest, and compared to Paxos
rather useful, cousin to Raft would be the family of ViewStamped replication algorithms(©« & Hiskov.
1988) however Raft significantly simplifies compared to ViewStamped replication.

It is common for academic papers to focus mostly on the core replication of events themselves,
and the closely related mechanism of electing a leader or determining a quorum. On the other
hand they commonly neglect important surrounding topics, such as cluster maintenance
activities or "environmental corner cases", that in the real world are equally important
ingredients in creating a complete solution for a highly available database.

Also the Raft algorithm has evolved in similar fashion. This is evident when following the
succession of published papers from the original Usenix 2014 paper(©Ongaro & Ousterhout, Usenix 2014) tq
the extended version of the same paper(©ngar & Ousterhout, 2014) {5 the thesis by Diego Ongaro
published later in 2014(Cngaro. 2014)

For example, the original Usenix paper did not include any mention of snapshotting the state
machine, rather simply describes an indefinitely growing log of events - clearly not realistic for
most real world systems that might implement Raft, including the authors' own Ramcloud
database. The extended version then added a discussion on snapshotting, including an
InstallSnapshot RPC for sending the snapshot to followers when needed.

Similarly the original Usenix paper does include a discussion on cluster membership changes,
but it is obvious even to the casual reader that this part of the paper did not receive the same
amount of thought that went into the core of the algorithm, and certainly does not achieve the
simplicity goal the authors had set themselves. Ultimately the cluster membership change
protocol ends up in the curious state where members of the cluster are receiving (and
accepting!) events from a leader that's not even part of the current cluster. The Ongaro thesis
then replaces that complexity with 2 very simple RPCs to add and remove servers one at a time.
And as is often the case, the simpler algorithm also turns out to be more robust than the
complex onel!

In the same spirit of evolving from a core protocol to a more complete and realistic
implementation, the goal of this paper is to introduce 4 modifications to Raft, that are relevant to
real-world distributed databases:



1. Cluster initialization: A cluster initialization step that is the starting point of the lifecycle of
the cluster. Having this step explicitly described makes it more straightforward to
describe also the database id, and their relation to AddServer RPC.

2. Universally Unique Database Identifier: to identify whether a snapshot or a log on one
server is in fact some (predecessor or successor) state of the same state machine on
other servers of the cluster, or whether it's a snapshot of some completely different state
machine that has nothing to do with this cluster.

3. Pre-vote algorithm: this paper provides a more detailed specification of the idea
suggested only in passing in §9.6 in (Ongaro, 2014)

4. Leader stickiness: Building on the pre-vote algorithm, we also modify Raft to reject
servers that attempt to elect themselves as leader, if the current leader appears to still
be healthy to the rest of the cluster. This is to avoid flip-flopping between two competing
leaders.

The proposed modifications in this paper are written against the most recent publication of Raft,
Diego Ongaro's thesis paper©"% 2014 \which the reader is assumed to be familiar with. The
tables summarizing the algorithm have been reproduced on the next few pages. The additions
of this paper are highlighted in blue.

Persistent state on all servers: Called on a single server that becomes the first member of a

(Updated on stable storage before responding to RPCs) new cluster.

databaseld unique, constant identifier generated by
InitializeCluster. Set state:

currentTerm latest term server has seen (initialized to databaseld generate a universally unique id
0, increases monotonically) currentTerm if unset, set 0

votedFor candidateld that received vote in current log[] keep current contents (which may be nothing)
term (or null if none)

log[] log entries; each entry contains command After initialization, move to follower state (then elect yourself
for state machine, and term when entry to leader).

was received by leader (first index is 1)

Volatile state on all servers:

commitindex index of highest log entry known to be
committed (initialized to O, increases
monotonically)

lastApplied index of highest log entry applied to state
machine (initialized to 0, increases
monotonically)

Volatile state on all leaders:

(Reinitialized after election)

nextindex[] for each server, index of the next log entry
to send to that server (initialized to leader
last log index + 1)

matchindex[] for each server, index of highest log entry
known to be replicated on server
(initialized to 0, increases monotonically)



AppendEntries RPC Rules for Servers

Invoked by leader to replicate log entries (§3.5), also
used as heartbeat (§3.4).

Arguments:
term leaders term
leaderld so follower can redirect clients

prevLoglndexindex of log entry immediately preceding
new ones

prevLogTermterm of prevLoglndex entry

entries[] log entries to store (empty for heartbeat;
may send more than one for efficiency)

leaderCommitleader's commitindex

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLoglndex and prevLogTerm

Receiver implementation:

1. Reply false if term < currentTerm (§3.3)

2. Reply false if log doesn't contain an entry at
prevLoglndex whose term matches prevLogTerm
(§3.5)

3. If an existing entry conflicts with a new one (same
index but different terms), delete the existing entry
and all that follow it (§3.5)

4. Append any new entries not already in the log

5. If leaderCommit > commitindex, set commitindex =
min(leaderCommit, index of last new entry)

All servers:

e If commitindex > lastApplied: increment lastApplied,
apply log[lastApplied] to state machine (§3.5)

e If RPC request or response contains term T >
currentTerm: set currentTerm = T, convert to follower
(§3.3)

Followers (§3.4):

e Respond to RPCs from candidates and leaders

e If election timeout elapses without receiving
AppendEntries RPC from current leader or granting vote
to candidate: call PreVote RPC

Candidates (§3.4)

e On conversion to candidate, start election:

o Increment currentTerm

o Vote for self

o Reset election timer

o  Send RequestVote RPCs to all other servers
e |[f votes received from majority of servers: become leader
e |f AppendEntries RPC received from new leader: convert

to follower
e |[f election time elapses: start new election
Leaders:

e Upon election: send initial empty AppendEntries RPC
(heartbeat) to each server, repeat during idle periods to
prevent election timeouts (§3.4)

e |f command received from client: append entry to local
log, respond after entry applied to state machine (§3.5)

e |[flast log index >= nextIndex for a follower: send
AppendEntries RPC with log entries starting at nextindex

o If successful: update nextindex and matchindex for
follower (§3.5)

o If AppendEntries fails because of log inconsistency:
decrement nextindex and retry (§3.5)

e If there exists an N such that N > commitindex, a
majority of matchindex[i] >= N, and log[N].term ==
currentTerm: set commitindex = N (§3.5, §3.6)

AddServer RPC RemoveServer RPC

Invoked by admin to add a server to the cluster
configuration.

Arguments:

newServer address of server to add to configuration

databaseld the universally unique databaseld of the
cluster to which the new server is added.

Results:
status OK if server was added successfully
leaderHint  address of recent leader, if known

Receiver implementation:

1. Reply NOT_LEADER if not leader (§6.2)

2. If newServer.databaseld is set, and
leader.databaseld != newServer.databaseld, reply
with error and instruct admin to reset the new server
to uninitialized state (e.g. delete database).

Invoked by admin to remove a server from the cluster
configuration.

Arguments:

oldServer  address of server to remove from configuration
Results:

status OK if server was removed successfully

leaderHint  address of recent leader, if known

Receiver implementation:

1. Reply NOT_LEADER if not leader (§6.2)

2. Wait until previous configuration in log is committed
(§4.1)

3. Append new configuration entry to log (old configuration
without oldServer), commit it using majority of new
configuration (§4.1)

4. Reply OK and, if this server was removed, step down
(§4.2.2)



3. If newServer.databaseld is unset, set it to
leader.databaseld, also set currentTerm and
log.index to 0.

4. Catch up new server for fixed number of rounds.
Reply TIMEOUT if new server does not make
progress for an election timeout or if the last round
takes longer than the election timeout. (§4.2.1)

5. Wait until previous configuration in log is committed
(§4.1)

6. Append new configuration entry to log (old
configuration plus newServer), commit it using
majority of new configuration (§4.1)

7. Reply OK

Raft State for Compaction InstallSnapshot RPC

Persisted before discarding log entries. Also sent from

leader to slow followers when transmitting state.

previndex index of last discarded entry (initialized to
0 on first boot)

prevTerm term of last discarded entry (initialized to 0
on first boot)

databaseld the unique identifier for this database

prevConfig latest cluster membership configuration up
through previndex

PreVote RPC (NEW)

Called by a server before changing itself to Candidate
status. If a majority of servers return true, proceed to
Candidate. Otherwise, wait for another election timeout.

Arguments:

nextTerm caller's term + 1

candidateld caller

lastLoglIndex index of caller's last log entry
lastLogTerm term of caller's last log entry

Results:

term currentTerm, for caller to update itself

voteGranted true means caller would receive vote if it
was a candidate

Receiver implementation:

1. Reply false if last AppendEntries call was received
less than election timeout ago (leader stickiness)

2. Reply false if nextTerm < currentTerm

3. Ifcaller's log is is at least as up-to-date as receiver's
log, return true

Invoked by leader to send chunks of a snapshot to a follower.
Leaders always send chunks in order. AddServer may call
InstallSnapshot also to copy an empty initial state, in this
case zero bytes are transferred, but the state is synced.

Arguments:
term leader's term
leaderld so follower can redirect clients

lastindex the snapshot replaces all entries up to and
including this index

lastTerm term of lastindex

lastConfig latest cluster configuration as of lastindex
(include only with first chunk)

offset byte offset where chunk is positioned in the
snapshot file

datal] raw bytes of the snapshot file, starting at
chunk

done true if this is the last chunk

Results:

term currentTerm, for leader to update itself

Receiver implementation:

Reply immediately if term < currentTerm

Create new snapshot file if first chunk (offset is 0)

Write data into snapshot file at given offset

Reply and wait for more data chunks if done is false

If lastindex is larger than latest snapshot's, or if lastindex
and lastTerm are zero, save snapshot file and Raft state
(databaseld, lastindex, lastTerm, lastConfig). Discard
any existing or partial snapshot.

6. If existing log entry has same index and term as
lastindex and lastTerm, discard log up to through
lastindex (but retain any following entries) and reply
Discard the entire log

Reset state machine using snapshot contents (and load
lastConfig as cluster configuration)

aorwON =
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RequestVote RPC

Invoked by candidates to gather votes (§3.4).

Arguments:

term candidate's term

candidateld candidate requesting vote
lastLoglndex index of candidate's last log entry (§3.6)
lastLogTerm term of candidate's last log entry (§3.6)

Results:
term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Receiver implementation:

1.

2.
3.

Reply false if last AppendEntries call was received
less than election timeout ago (leader stickiness)
Reply false if term < currentTerm (§3.3)

If votedFor is null or candidateld, and candidate's log
is at least as up-to-date as receiver's log, grant vote
(§3.4, §3.6)

Figure 1: Summary of the Raft algorithm, from (Ongaro, 2014). References to a section (like
§3.4) reference sections in (Ongaro, 2014). Additions proposed in this paper are highlighted in
blue. Initialize Cluster and PreVote RPC are new in their entirety, though the idea of a PreVote
was suggested in (Ongaro, 2014).

3. Cluster Initialization

A real world implementation of Raft, or any other consensus protocol, would of course have
some kind of bootstrap procedure, that will execute multiple actions to initialize the state of a
new cluster. Arguably, such a bootstrap sequence is clearly implied in (Ongaro, 2014), as the
state is set to some default values "at first boot".

However, reviewers of previous versions of this paper pointed out that the descriptions of a
databaseld and the closely related AddServer RPC would benefit from having an explicit
initialization step as part of the Raft algorithm. In addition, the discussion resulted in a
consensus that all real world implementations we are familiar with, actually have an initialization
sequence that does exactly the steps we will document here. (Of course a real world
implementation would still do a number of other initialization tasks that will still not be relevant to
describe as part of Raft.)

The cluster initialization step is simple yet profound. When a server starts, it is incapable of
becoming a leader and hence incapable of processing any events from client. The server must
either join an existing cluster via an AddServer call, or explicitly become a new cluster with
InitializeCluster.



If InitializeCluster is called on a server, it will generate a new databaseld (see next section) and
also set any other state variables to their default values. Note that after initialization, the server
will itself be a majority of a cluster with 1 server, so it will proceed to elect itself as a leader.

InitializeCluster marks the starting point of the lifecycle of a Raft cluster and state machine. The
life cycle ends when the last server is removed (or rather, removes itself) from the cluster. In
practice the lifecycle is more likely to end simply with the servers being shut down, never to be
restarted again.

However, it is also allowed to call InitializeCluster on a server that is already part of an initialized
cluster (that has one or more members). This could be necessary for a number of reasons. In
the Raft algorithm itself, it is for example possible to get into a state where a majority of servers
have been lost permanently. The cluster is now without a leader and will not be able to accept
new events from clients, and also will not be able to elect a new leader. Without a leader it is
also impossible to correct the situation, since AddServer and RemoveServer should be called
on the leader.

In such cases the solution is to call InitializeCluster again, essentially starting a new cluster from
the remains of the one that was just lost. As the databaseld is now re-generated, this also helps
prevent split brain. Or, in the case that the admin would call InitializeCluster on multiple parts of
the lost cluster, they would still split into separately identifiable parts, each with their own distinct
databaseld.

Therefore, when calling InitializeCluster, the server may or may not be empty of data. If there
already is some data on the server, the currentTerm and log index are preserved, but they
should be interpreted as the starting point in the lifecycle of a new cluster and detached from the
cluster they previously belonged to - the log now lives irrevocably in a parallel history.

Note that for the other route for a server to become part of a Raft cluster, via the AddServer call,
the opposite is true: The server must either already be in a state with a matching databaseld or
it must be in the empty and uninitialized state. It is not allowed to add a server that contains
some unrelated data (or state) - the administrator would have to first delete such database/state
from the new server.

Note that in the algorithm description above, we have specified InitializeCluster as an operation
that can only be called on a single server, which then becomes the sole member of its new
cluster. This is mostly an artefact of the way Raft is designed: it is always the Leader (or
sometimes a Candidate) that makes Remote Procedure Calls toward followers. But there is no
procedure where followers call to each other.

For real world implementations it may be desirable - in particular to avoid unnecessary
InstallSnapshot calls, which are expensive on large snapshot files - to allow a minority of
servers, still connected to each other, to enter into the new cluster together, rather than
initializing a single server first and then re-adding the others with AddServer RPC. This use
case is in fact implicitly supported: After calling InitializeCluster on the first server, it would be
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possible to copy the newly generated databaseld to any other servers one would want to bring
into the new cluster. For example, an implementation may provide some kind of setDatabaseld()
call for this purpose. Note that this would definitively be considered an "admin forceful override"
type of operation. The admin would only use this in unusual circumstances and must be sure to
only call it on nodes that actually share the same log history with the server the databaseld is
copied from. After setting the databaseld on a second server, it could then join the first server's
cluster normally via an AddServer call. Since the databaseld's of the servers match, the
AddServer call will succeed without an InstallSnapshot operation.

4. Universally Unique Database Identifier

While the Raft algorithm as published in (Ongaro, 2014) does a great job in maintaining the
integrity of a single replicated state machine, in the real world database clusters don't live in a
vacuum. A sysadmin will be operating multiple servers in one or more datacenters, each server
belonging to some cluster. Failing to take this obvious fact into account, implementations will
often be left vulnerable to various split brain conditions, especially due to operational errors
such as misconfiguration. While we could blame many of these conditions on the sysadmin, it is
actually simple for an implementation to protect against such errors, and one should of course
therefore do so.

To illustrate a simple path to a split brain, one out of many possible, consider a 2 server cluster
and the following steps, that are fully legitimate operations as defined in the (Ongaro, 2014)
version of Raft:

S1 112 112131415

S2 [1]2 112191415

(a) (b) ()

Figure 2:  Sequence of steps leading to split brain, which goes undetected:
a) Two servers S1 and S2 form the cluster, with S1 being the leader. They commit
x<-1 and y<-2, after which there is a network split. Since neither server alone is a
majority, there is no leader and replication stops. At this point both servers have
(term=1, index=2).
b) To get the service back into available state, the sysadmin has to change the
cluster configuration by calling S1.RemoveServer(S2). (Strictly speaking this can
only be called on the leader, however since it is not possible for any server to
become leader in this state, a real world implementation would provide - or the



sysadmin would in any case invent - some method of forcing the reconfiguration to
get back to a functional state.) Unfortunately, another sysadmin at the same time
calls S2.RemoveServer(S1), causing split brain.

S1 commits z<-3 and x<-4. (term=2, index=2)

S2 commits z<-9. (term=2, index=1)

c) As the network is restored, the sysadmins take steps to rejoin the servers with
each other, calling S1.AddServer(S2). S1 then calls AppendEntries RPC to
compare the term and index of each of the servers logs, and sending the one log
entry (x<-4) that appears to be missing, causing S2 to "catch up".

Finally, S1 commits, and replicates to S2: y<-5. (term=3, index=1)

The diverging value at (term=2, index=1) goes undetected, perpetuating a split brain
between the state machines, until overwritten by a new value.

More generally, the various conditions that the AddServer RPC must be capable of dealing with,
are the following:

Event Correct action
#1 A new server, with an empty database, is added to InstallSnapshot RPC
the cluster.
#2 A server that has previously been removed from AppendEntries RPC
the cluster, is added back. The snapshot files and If too much time has passed, the leader's log will not
log are in the state as they were when removed. reach far back enough in time. In this case the new
server is considered a slow follower and
InstallSnapshot RPC is implicitly called.
#3 A server that was never part of this cluster, but has | Fail the request, since the server already hosts
a non-empty database (and has currentTerm and some other database.
index set to non-zero values) that was previously (Alternatively, an implementation could automatically
created by some other application, is added to the delete such "old" data and act as in #1. But this is
cluster. not covered in this paper.)
#4 A server that was never part of this cluster, but has | AppendEntries RPC
been provisioned with a backup copy of the correct
database (in order to speed up the process of
adding it to the cluster), is added to the cluster.

Figure 3: Table of different kinds of scenarios that may be encountered by AddServer RPC.

The problem for the implementor of a replicated state machine is that it is not easy to distinguish
between the different scenarios 2-4. A simple robust solution would be to always delete data
and reset state on the added server, so that one would always commence with InstallSnapshot
RPC. However, this would defeat the sysadmin's attempt at optimizing the process in scenario
#4, and may often be sub-optimal also for scenario #2.




To be able to distinguish scenario #3 from the others, we will have to introduce a Universally
Unique Database Identifier, which we will call databaseld in the above summary tables of the
Raft algorithm.?

Any pseudo-unique identifier is fine, such as using a UUID. Implementations should not allow
users to provide a unique identifier. That would just lead to every other databaseld having the
value "mycluster”.

The databaseld is generated at the creation of a new cluster with InitializeCluster and is
thereafter constant and the same value for all servers in the cluster. It should be persisted to
durable storage, and should typically be part of backups. Note that the triplet of (databaseld,
term, index) will uniquely and globally identify a state of the database or state machine. If two
state machines both are in the state (databaseld=x, term=y, index=z), they are guaranteed to be
identical. Note how this extends the Log Matching property into a world where there exists more
than one distributed state machine (ie. database cluster), making it a globally valid property.

5. Pre-vote algorithm

Section 9.6 in (Ongaro, 2014) introduced the idea of a pre-vote algorithm, without actually
spelling out the details of such an algorithm. We will define one such algorithm here, so that we
can build upon it in the next section.

The usefulness of a pre-vote algorithm is easily explained. The Raft algorithm has a strong
property that leads its participants to always adopt the highest term they have observed from
another server. This property is key to the robustness of the algorithm: elections become
deterministic because of this, and the Log Matching property likewise depends on this.

A drawback in real-world implementations is that this easily leads to unnecessary "term
inflation". Assuming servers will use 64-bit integer mathematics, they are unlikely to run out of
numbers during the lifetime of a cluster, but clusters do become subject to a behavior where the
malfunctioning server will force an election when re-joining a cluster, even if the rest of the
cluster has been healthy and continues to have a fully functioning leader.

2 Note that the reference implementation of Raft, LogCabin (https://github.com/logcabin/logcabin) includes a
global variable called clusterUUID. It does not appear to have the functionality proposed here, rather is used
as part of the client protocol. Also it is set in the user configuration, and not persisted to the log or snapshot.
Hence, the LogCabin UUID is, like it name suggests, used to identify the cluster of servers. Otoh, this paper
is proposing a UUID to identify the state machine data(base) as data, irrespective of any server instances
the data may reside on.
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Figure 4: 0) A Raft cluster with 3 servers, one of which (S2) is temporarily disconnected from the
rest.

1) Raft causes the disconnected server to call for an election once every election timeout,
causing it to increment currentTerm. As it cannot connect to other servers, it will lose its
election, and keep retrying.

2) Once it is able to reconnect with the rest of the cluster, its higher term will propagate to S1
and S3. This will cause S3 to stop accepting new log entries from S1, and will cause S1 to step
down as leader.

3) A new election for term=58 is eventually triggered and will be won by whichever server goes
ahead first.

The solution is to introduce a pre-vote algorithm, which is executed before changing to
candidate status. Only if the pre-vote is successful, should the server switch to candidate,
otherwise it should wait for another election timeout.

The implementation of the pre-vote algorithm is straightforward: receivers of a PreVote RPC
should respond with the same result that they would if this was an actual vote.

However, it is important to emphasize that the pre-vote response is not binding on a server.
While each server must only vote for a single candidate for a given term, this is not true for the
pre-vote phase. Multiple to-be-candidates could receive a positive indication in the pre-vote
phase, however once they proceed to the actual election, only one of them would receive the
actual vote. This behavior is key to avoiding race conditions that could lead to inconclusive
elections.

For example, a server could succeed in getting a prospective majority in the pre-vote phase, but
then become itself disconnected before it is able to proceed with the actual election. In this case
it would be a waste of precious failover time not to vote for another candidate who still can win
the election.

6. Leader stickiness

The last flaw to address in this paper is Raft's vulnerability, in some corner cases, to leader
flip-flopping. An example of such a scenario is shown in the following picture:
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Figure 5: 0) In the starting state, S1 is a leader and S2 and S3 followers. At this specific
moment, clients are not sending any new events, so nothing is added to the log on S1, but it is
sending empty AppendEntries RPC calls for heartbeat purposes.

Note that the below scenario only happens when all logs in the cluster remain equal. Raft would
in fact protect against flip-flopping in a case where S1 is able to successfully replicate new
events to S3, since that would cause S2 to lose elections (and pre-votes) until it can catch up to
the same position in its own log.

1) Network connectivity between S1 and S2 breaks down, causing each of them to conclude
that the other server is disconnected from the cluster. However, both of them can still connect to
S3.

2) As the election timeout is triggered on S2, it will increase its currentTerm and call
RequestVote RPC. S3 will grant the vote, and S2 will become the new leader.

3) S1 will learn from S3 about the increased term, and step down as leader. However, it will not
get any connection from S2, which will cause election timeout to trigger. S1 will then increase its
currentTerm and call for an election. S3 will grant the vote, making S1 leader again.

4) This flip-flopping continues forever until the network connectivity between S1 and S2 is
restored.

It is important to understand that, on a superficial level, flip-flopping is not a failure of the Raft
protocol. Superficially, all the requirements are met at all times: There is exactly one leader at
any time, hence the cluster remains available. Also the Log Matching property remains intact,
the integrity of data is not corrupted.

In practice however, such flip-flop behavior is undesired. It would be unwanted overhead for the
clients to have to reconnect to a new leader every few seconds. For some types of
implementations - such as a database supporting long lived, multi-statement transactions - it
could make the cluster de-facto unavailable, if the leader's elected term is shorter than the time
it takes to commit a transaction.

So instead of such flip-flops, we would expect a (healthy) cluster to keep the same leader for
days and weeks, maybe even months.

Raft actually does protect against some cases of flip-flopping. Since it is a requirement for the
winning server to have its log at least as up to date as a majority of the cluster, this means that

12



a single server, or minority of servers, cannot disrupt the majority once they have fallen behind.
Which they are of course likely to do as soon as they become disconnected from the leader.

The example described above therefore requires that no new log entries are added, or at least
not replicated and committed, so it is admittedly a corner case. However, in the real world
flip-flopping may often also be caused by flaky networks, where connectivity breaks down for
some seconds, then is restored, then breaks down again. Such network conditions would
increase the likelihood of flip-flopping compared to our simple example, since the
intermittently-disconnected servers will be able to catch up with the leader. In such conditions
the desired behavior would be for the cluster to keep its current leader as long as possible,
rather than descending into a cycle of frequent elections and new leaders. It is with these
real-world situations in mind that the following improvement is proposed.

A simple fix to such network flakiness would be to simply increase the election timeout to be
longer than the typical network interruption. This would allow short disconnections to heal
themselves before servers in the cluster start calling for election. And this is in fact a common
and effective fix to flakiness. But increasing the election time also has the effect of increasing
the failover time in every case. Hence this proposal to add "leader stickiness" to Raft can be
seen as a more advanced solution. While it adds some complexity, it is motivated by minimizing
failover time, or maximizing availability.

The change to add "leader stickiness" is intuitive: Followers should reject new leaders, if from
their point of view the existing leader is still functioning correctly - meaning that they have
received an AppendEntries call less than an election timeout ago.

This will have the effect that a single "problematic" server (or even a minority of servers) with
connectivity issues will not be able to win new elections, if a majority of the cluster is still
connected to the current leader and functioning normally. Or, put in more political wording:
followers will be loyal to their existing leader, and only servers that agree that an election is
needed (Candidates) will vote for a leader from within themselves.

The intuitive fix does introduce a non-obvious change to how new leaders are chosen also in
the common case. Now, with the stickiness added to the elections, the first servers to have their
election timeout lapse after a leader failure, will actually be rejected in the PreVote phase, since
a majority of servers will still think that the leader is there. Only when at least half of the servers
have reached the election timeout, will a server be able to gain majority support from the
PreVote phase, and then ultimately from the RequestVote itself. In the simple case, for a cluster
with 3 members, the second server to call PreVote RPC will become the new leader, ina 5
member cluster the third server, and so on.
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