

 1

How to evaluate which
MySQL High Availability
solution best suits you

Henrik Ingo
MySQL Connect, San Francisco, 2012

Please share and reuse this presentation licensed under the Creative Commons Attribution License
http://creativecommons.org/licenses/by/3.0/

 2

Henrik Ingo

open source technology and strategy specialist

active in MySQL-forks, Drupal communities

author of
"Open Life: The Philosophy of Open Source"

Senior Performance Architect, Nokia

www.openlife.cc

henrik.ingo@openlife.cc

 3

What is High Availability?

 4

What is high availability?

Performance
Transactions / second (throughput)

Response time (latency)
Percentiles (95% - 99%)

Durability
Speaking of databases
Committed data is not lost
D in ACID

High Availability
Get any response at all (tps > 0)
Measured as percentile (99.999%)

Replicas, snapshots
point in time, backups

Clustering
Monitoring

Failover

Replication
Redundancy

 5

Uptime

Percentile target Max downtime per year

90% 36 days

99% 3.65 days

99.5% 1.83 days

99.9% 8.76 hours

99.99% 52.56 minutes

99.999% 5.26 minutes

99.9999% 31.5 seconds

Beyond system availability: Average downtime per user.

 6

High Availability is Redundancy

● HA is achieved via redundancy:

● RAID: If one disk crashes,
other one still works

● Clustering: If one server crashes,
other one still works / can take over

● Power: In case a fuse blows, have another power input
● Network: If a switch/NIC crashes, have a second network

route
● Geographical: If a datacenter is destroyed (or just

disconnected), move all computation to another data
center.

● Biological: If you lose a kidney, you have another one left.

 7

Redundancy

Making data available

 8

Durability

● Data is stored on physical disks

● Is it really written to the disk?
● Also: Written in transactional way,

to guarantee
● atomicity
● integrity
● crash safety

"Durability is an interesting concept. If I sync a commit to
disk, the transaction is said to be durable. But if I now take
a backup, then it is even more durable.
 - Heikki Tuuri, MySQL Conference 2009

 9

High Availability for databases

● HA is harder for databases

● Must make both HW resources and data redundant
● Not just data, but constantly changing data
● HA means operation can continue "uninterrupted", i.e.

not by restoring a backup to a new server

 10

Redundancy through Client side XA transactions

● Client writes to 2 independent
but identical databases

● Example: HA-JDBC
● No replication anywhere
● Sounds simple
● Got many databases out of sync
● Not covered in this talk

 11

Redundancy through shared storage

● Requires specialist hardware

● e.g. SAN
● Complex to operate?

http://www.percona.com/about-us/mysql-white-paper
/causes-of-downtime-in-production-mysql-servers/

● One set of data
● Single Point of Failure

● Active / Passive
(or bad things will happen)

● Active / Active: Oracle RAC,
ScaleDB

Disk

Primary
Cold

standby

?

 12

Redundancy through disk replication

● Requires specialist software
● DRBD ("RAID over Ethernet")
● or SAN-SAN replication

● Synchronous
● Second set of data inaccessible
● Active / passive

DiskDisk

Primary Cold
standby

?

DRBD

 13

DRBD vs Single node

60% of single node performance
Minimum latency 10x higher but average is not so bad (not shown)

 14

Redundancy through MySQL replication

● Replication at the RDBMS layer
● MySQL
● Tungsten Replicator
● Galera
● MySQL NDB Cluster

● Storage requirement multiplied
● Includes potential for scaling out

Master Slave

?

 15

So what is MySQL Replication?

● Statement based, or Row based (5.1+)

● Asynchronous

● Semi Synchronous plugin in 5.5+

● MySQL 5.6

● Global Transaction ID
● Server UUID
● Ignore (master) server-ids
● Per-schema multi-threaded slave

● Watch out for relay-log position with multiple slaves!
● Checksums
● Crash safe binlog and relay-log
● Delayed replication
● http://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html

● Due to the nature of replication, tools like pt-table-checksum and pt-table-sync are
important part of the picture!

 16

Inside the binary log (SBR)

> mysqlbinlog mysql-bin.*
[...]
/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
DELIMITER /*!*/;
at 240
#120331 0:54:56 server id 1 end_log_pos 339 Query thread_id=6 exec_time=0 error_code=0
use test/*!*/;
SET TIMESTAMP=1333144496/*!*/;
SET @@session.pseudo_thread_id=6/*!*/;
SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=1, @@session.unique_checks=1,
@@session.autocommit=1/*!*/;
SET @@session.sql_mode=1574961152/*!*/;
SET @@session.auto_increment_increment=1, @@session.auto_increment_offset=1/*!*/;
/*!\C latin1 *//*!*/;
SET @@session.character_set_client=8,@@session.collation_connection=8,@@session.collation_server=8/*!*/;
SET @@session.lc_time_names=0/*!*/;
SET @@session.collation_database=DEFAULT/*!*/;
INSERT INTO testnumber VALUES (1334)
/*!*/;
DELIMITER ;
DELIMITER /*!*/;
ERROR: File is not a binary log file.
DELIMITER ;
End of log file
ROLLBACK /* added by mysqlbinlog */;
/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

 17

Row based replication event

> mysqlbinlog mysql-bin.*
DELIMITER /*!*/;
at 4
#120331 0:52:23 server id 1 end_log_pos 240 Start: binlog v 4, server v 5.2.4-MariaDB-rpl-mariadb98~maverick-log
created 120331 0:52:23 at startup
Warning: this binlog is either in use or was not closed properly.
ROLLBACK/*!*/;
BINLOG '
Fyt2Tw8BAAAA7AAAAPAAAAABAAQANS4yLjQtTWFyaWFEQi1ycGwtbWFyaWFkYjk4fm1hdmVyaWNr
LWxvZwAAAAAAAAAAAAAXK3ZPEzgNAAgAEgAEBAQEEgAA2QAEGggAAAAICAgCAAAAAAAAAAAAAAAA
AA
AA
AAAAAAAAAAA=
'/*!*/;

● Yes, you can execute that statement against MySQL!
● MySQL 5.6.2 can also show the original SQL statement

 18

SHOW SLAVE STATUS

mysql> show slave status\G
*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
Master_Host: server1
Master_User: repluser
Master_Port: 3306
...
Master_Log_File: server1-binlog.000008 <- io_thread (read)
Read_Master_Log_Pos: 436614719 <- io_thread (read)
Relay_Log_File: server2-relaylog.000007 <- io_thread (write)
Relay_Log_Pos: 236 <- io_thread (write)
Relay_Master_Log_File: server1-binlog.000008 <- sql_thread
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
...
Exec_Master_Log_Pos: 436614719 <- sql_thread
...

Seconds_Behind_Master: 0

 19

MySQL 5.6 binary log

$ mysqlbinlog mysql-bin.000001
...
at 207
#120331 22:38:30 server id 1 end_log_pos 282 Query thread_id=1 exec_time=0
error_code=0
SET TIMESTAMP=1333222710/*!*/;
BEGIN
/*!*/;
at 282
#120331 22:38:30 server id 1 end_log_pos 377 Query thread_id=1 exec_time=0
error_code=0
SET TIMESTAMP=1333222710/*!*/;
insert into t1 values (1)
/*!*/;
at 377
#120331 22:38:30 server id 1 end_log_pos 404 Xid = 10
COMMIT/*!*/;

 20

Semi sync vs Single node (memory bound)

Practically no performance overhead on LAN
 NOTE: Semi-sync on WAN: tps = 1 / RTT = 10 tps!

Opportunity to relax sync_binlog setting (green - yellow)

 21

Slave lag (disk bound)

With disk bound workload (data set > RAM), slave lag is common
In practice limits master throughput 50-90%
Slave-prefetch tools combat this well. See:
Yoshinori Matsunobu, Anders Karlsson, Percona Toolkit

Graph and benchmark (C) Yoshinory Matsunobu, Percona Live UK 2011
http://www.percona.com/files/presentations/percona-live/london-2011/PLUK2011-linux-and-hw-optimizations-for-mysql.pdf

 22

So what is Tungsten Replicator?

● Replaces MySQL Replication

● MySQL writes binary log, Tungsten reads it and uses
its own replication protocol

● Global Transaction ID

● Per-schema multi-threaded slave

● Heterogeneous replication: MySQL <-> MongoDB <-> Pg

● Multi-master

● Including multiple masters to single slave
● Complex topologies

● Tungsten Enterprise

 23

So what is Galera?

● Inside MySQL: a replication plugin (kind of)
● Supports InnoDB only, MyISAM

experimental
● Replaces MySQL replication (or you could

use both)
● True multi-master, active-active
● Synchronous

● Still pretty good over WAN:
100 - 300 ms / commit, but works in
parallel

● Multi-threaded slaves, no limitation on use
case

● No slave lag or integrity issues
● Automatic node provisioning
● http://www.codership.com/downloads/download-mysqlgalera

Galera

Master MasterMaster

http://www.codership.com/downloads/download-mysqlgalera

 24

Galera w disk bound workload (EC2)

20 GB data / 6 GB buffer pool
Significant read-write scale-out up to 4 nodes!

Graph and benchmark courtesy of and copyright Codership Oy
http://codership.com/content/scaling-out-oltp-load-amazon-ec2-revisited

 25

So what is MySQL NDB Cluster?

● 3 node types: sql, data, and management.

● MySQL node provides an interface to the data, alternate API is
available: LDAP, Memcache, native NDB API

● Data nodes aka NDB storage engine.

● Note: Different features and performance compared to
InnoDB! (Consider training.)

● Transactions are synchronously written to 2 nodes (or more)
aka replicas.

● Transparent sharding:
Partitions = data nodes / replicas

● Automatic node provisioning, online re-partitioning
● High-performance for some workloads: 1 billion updates / min

2011-10-25 26

Summary of Replication Performance

● SAN has "some" latency overhead compared
to local disk. Can be great for throughput.

● DRBD = 50% performance penalty
● Replication, when implemented correctly, has

no performance penalty
● But MySQL replication w disk bound data set has

single-threadedness issues!
● Semi-sync is poor on WAN

● Galera & NDB = r/w scale-out
 = more performance

 27

Dealing with failures
aka

Clustering Frameworks

 28

MySQL specialist solutions

● When using MySQL replication
● MySQL-MMM, MySQL-MHA, Severalnines
● Tungsten Enterprise to manage Tungsten

Replicator
● Specialized solutions

● Understand MySQL and MySQL replication

 29

Cluster suites

● Heartbeat, Pacemaker, Red Hat Cluster Suite
● Generic, can be used to cluster any server

daemon
● Usually used in conjunction with Shared Disk

or Replicated Disk solutions
● Preferred choice

● Can be used with Replication.
● Robust, Node Fencing / STONITH

 30

Clustering frameworks

Failover

● VIP points to Master
● External clustering suite

polls all nodes for
health

● In case of Master error,
move VIP to Slave

● + other management
tasks

● Solutions:
● Automated

Replication Failover
● Cluster Suites
● VM based

 31

Sounds simple. What
could possibly go wrong?

● Old Master must stop service
(VIP, os, DB). But it is not
responding, so how do you make
it stop?

● Polling from the outside.
Interval = 1 sec, 10 sec, 60 sec!

● What if replication fails first and
client transactions don't?

● Polling connectivity of DB nodes
but not client p.o.v.

● Failover can be expensive (SAN,
DRBD) -> false positives costly

● https://github.com/blog/1261-github-availability-this-week

https://github.com/blog/1261-github-availability-this-week

 32

Load Balancers for Multi-Master clusters

Node failure

No "failover"

Synchronous Multi-Master
Clusters:
Galera
NDB

Load balancers:
HAProxy
JDBC/PHP Driver
Hardware (e.g. F5, Cisco)

Clustering Suites:
You could use VIP based
failover too, but why?

 33

Load Balancer in JDBC/PHP client

● No Single Point of Failure

● One less layer of network
components

● Is aware of MySQL
transaction states and errors

● Variant: Load balancer (like
HA proxy) installed on each
app node
> For other languages than
Java & PHP

 34

Key takeaway: Is a clustering solution part of
the solution or part of the problem?

● "Causes of Downtime in Production MySQL Servers"

by Baron Schwartz:

● #1: Human error
● #2: SAN

● Complex clustering framework + SAN =

● More problems, not less!
● Galera and NDB =

● Replication based, no SAN or DRBD
● No "failover moment", no false positives
● No clustering framework needed (JDBC loadbalance)
● Simple and elegant!

 35

Choosing a solution that best
suits you

 36

So we pick a HA solution and are done!

MySQ
L 5.0

MySQ
L 5.1

MySQ
L 5.5

MySQ
L 5.6

Tung
sten

Galer
a

DRBD SAN NDB

InnoDB

Usability

Performance

Asynchronous

Statement based

Row based

Semi-sync

Synchronous

Global trx id

Multi threaded

HA Options ?

 37

InnoDB based?

InnoDB
We use InnoDB. We want to continue using InnoDB.

Which solutions support InnoDB?

NDB is it's own storage engine.

It's great. It can blow away all others in a benchmark.

But it's not InnoDB and is not considered here.

MySQ
L 5.0

MySQ
L 5.1

MySQ
L 5.5

MySQ
L 5.6

Tung
sten

Galer
a

DRBD SAN NDB

InnoDB + + + + + + + +

 38

Replication type?

Competence:
Replication = MySQL DBA can manage
DRBD = Linux sysadmin can manage
SAN = Nobody can manage

Operations:
Disk level = cold standby = long failover
time
Replication = hot standby = short failover
time
++ for global trx id, easy provisioning

Performance:
SAN has higher latency than local disk
DRBD has higher latency than local disk
Replication has surprisingly little overhead

Redundancy:
Shared disk = Single Point of Failure
Shared nothing = redundant = good

Higher level replication is better
<------------ MySQL server level replication ----------> <- disk level-> <engine>

MySQ
L 5.0

MySQ
L 5.1

MySQ
L 5.5

MySQ
L 5.6

Tung
sten

Galer
a

DRBD SAN NDB

InnoDB + + + + + + + +

Usability + + + + ++ ++ - +

Performance (1) (1) + - - +

 39

Statement vs Row based?
Asynchronous vs Synchronous?

MySQ
L 5.0

MySQ
L 5.1

MySQ
L 5.5

MySQ
L 5.6

Tung
sten

Galer
a

DRBD SAN NDB

InnoDB + + + + + + + +

Usability + + + + ++ ++ - +

Performance (1) (1) + - - +

Asynchronous + + + + + (2)

Statement based + + + + +

Row based + + + + + (3) (3) +

Semi-sync + +

Synchronous + + + +

Global trx id + + + +

Multi threaded (1) (1) + +

Row based = deterministic = good
Statement based = dangerous

Global trx id = easier setup & failover for
complex topologies

Asynchronous = data loss on failover
Synchronous = good

Multi-threaded = scalability

 40

Clustering framework vs load balancing?

MySQ
L 5.0

MySQ
L 5.1

MySQ
L 5.5

MySQ
L 5.6

Tung
sten

Gal
era

DRBD SAN NDB

InnoDB + + + + + + + +

Usability + + + + + ++ - +

Performance (1) (1) + - - +

Asynchronous + + + + + (2)

Statement based + + + + +

Row based + + + + + (3) (3) +

Semi-sync + +

Synchronous + + + +

Global trx id + + + +

Multi threaded (1) (1) + +

Cluster suite / LB + +
1) Multi-threaded slave, 1 per schema
2) No, but can be combined with MySQL replication
3) Reliability comparable or better than row based replication

 41

Conclusions

● Simpler is better

● Higher level replication is better: MySQL level replication is better than
DRBD which is better than SAN

● Synchronous replication = no data loss

● Asynchronous replication = no latency (WAN replication)

● Synchronous Multi-Master = no failover = no failover / clustering
frameworks

● Multi-threaded slave increases performance in disk bound workload

● Global trx id, autoprovisioning increases operations usability

● Galera and NDB provide all these with good performance and stability

 42

References

● http://openlife.cc/blogs/2011/july/ultimate-mysql-high-availability-solution

● http://openlife.cc/category/topic/galera

● http://openlife.cc/blogs/2011/may/drbd-and-semi-sync-shootout-large-server

● http://www.percona.com/about-us/white-papers/

● http://www.mysqlperformanceblog.com/2011/09/18/disaster-mysql-5-5-flushing/

● https://github.com/blog/1261-github-availability-this-week

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

