

 1

How to evaluate which
MySQL High Availability
solution best suits you
Henrik Ingo & Ben Mildren
MySQL Conference And Expo, 2012

Please share and reuse this presentation licensed under the Creative Commons Attribution License
http://creativecommons.org/licenses/by/3.0/

2

Henrik Ingo

Senior Performance Architect,
Nokia

• SOA:
• Each team does their own thing

• Nokia and web?
• App store, music store, Maps,

SSO...

• Store: 13M apps/day, 100M
registered users

• Architect
• reviews, "internal consultant"

• MySQL improvements:
• Recommend backup, HA, version

etc... best practices

open source technology and
strategy specialist

active in MySQL-forks, Drupal
communities

author of "Open Life: The
Philosophy of Open Source"

www.openlife.cc

henrik.ingo@openlife

3

Ben Mildren

About Pythian

• Global industry-leader in remote
database administration services and
consulting for Oracle, Oracle
Applications, MySQL and SQL Server

• Work with over 150 multinational
companies such as Toyota, Fox Sports,
and MDS Inc. to help manage their
complex IT deployments

• Employ 7 Oracle Aces, including 2 Ace
Directors

• 24/7/365 global remote support for DBA
and consulting, systems administration,
special projects or emergency response

MySQL DBA, Pythian

• Over 10 years experience as a
Production DBA

• Experience of MySQL (4.1+), SQL
Server, Oracle

• Ex-Nokia Services, worked with Henrik
on Music, Maps, Messaging, etc

 4

What is High Availability?

5

What is high availability?

Performance
Transactions / second (throughput)

Response time (latency)
Percentiles (95% - 99%)

Durability
Speaking of databases
Committed data is not lost
D in ACID

High Availability
Get any response at all (tps > 0)
Measured as percentile (99.999%)

Replicas, snapshots
point in time, backups

Clustering
Monitoring

Failover

Replication
Redundancy

6

Uptime

Percentile target Max downtime per year

90% 36 days

99% 3.65 days

99.5% 1.83 days

99.9% 8.76 hours

99.99% 52.56 minutes

99.999% 5.26 minutes

99.9999% 31.5 seconds

Beyond system availability: Average downtime per user.

7

High Availability HOWTO

• HA is achieved via redundancy:

• RAID: If one disk crashes,
other one still works

• Clustering: If one server crashes,
other one still works / can take over

• Power: In case a fuse blows, have another power input

• Network: If a switch/NIC crashes, have a second network
route

• Geographical: If a datacenter is destroyed (or just
disconnected), move all computation to another data
center.

• Biological: If you lose a kidney, you have another one left.

 8

Redundancy

Making data available

9

Durability

• Data is stored on physical disks

• Is it really written to the disk?
• Also: Written in transactional way,

to guarantee
• atomicity
• integrity
• crash safety

• "Durability is an interesting concept. If I sync a commit to disk,
the transaction is said to be durable. But if I now take a backup,
then it is even more durable.
 - Heikki Tuuri, MySQL Conference 2009

10

High Availability for databases

• HA is harder for databases

• Must make both HW resources and data redundant

• Not just data, but constantly changing data

• HA means operation can continue "uninterrupted", i.e.
not by restoring a backup to a new server

• Can be achieved in several ways:

• Shared disks

• Disk based replication

• MySQL based replication

• Client side XA transactions

11

Redundancy through shared storage

• Requires specialist hardware

• e.g. DAS or SAN
• Complex to operate?

http://www.percona.com/about-us/mysql-white-paper
/causes-of-downtime-in-production-mysql-servers/

• One set of data

• Single Point of Failure
• Active / Passive

(or bad things will happen)

• Active / Active: Oracle RAC, ScaleDB

12

Redundancy through disk replication

• Requires specialist software

• DRBD
• SAN based software

• Storage requirement multiplied

• Second set of data inaccessible

• Again active / passive

13

Redundancy through MySQL replication

• Replication at the RDBMS layer

• MySQL
• Tungsten Replicator
• Galera
• MySQL NDB Cluster

• Storage requirement multiplied

• Includes potential for scaling out

14

Redundancy through Client side XA transactions

• Client writes to 2 independent but identical
databases

• Example: HA-JDBC

• No replication anywhere

• Sounds simple

• Got many databases out of sync

• Not covered in this tutorial

15

So what is MySQL Replication?

• Replication copies transactions from the master
and replays them to the slave:

16

Inside the binary log (SBR)

> mysqlbinlog mysql-bin.*
[...]
/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
DELIMITER /*!*/;
at 240
#120331 0:54:56 server id 1 end_log_pos 339 Query thread_id=6 exec_time=0 error_code=0
use test/*!*/;
SET TIMESTAMP=1333144496/*!*/;
SET @@session.pseudo_thread_id=6/*!*/;
SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=1, @@session.unique_checks=1,
@@session.autocommit=1/*!*/;
SET @@session.sql_mode=1574961152/*!*/;
SET @@session.auto_increment_increment=1, @@session.auto_increment_offset=1/*!*/;
/*!\C latin1 *//*!*/;
SET @@session.character_set_client=8,@@session.collation_connection=8,@@session.collation_server=8/*!*/;
SET @@session.lc_time_names=0/*!*/;
SET @@session.collation_database=DEFAULT/*!*/;
INSERT INTO testnumber VALUES (1334)
/*!*/;
DELIMITER ;
DELIMITER /*!*/;
ERROR: File is not a binary log file.
DELIMITER ;
End of log file
ROLLBACK /* added by mysqlbinlog */;
/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

17

Row based replication event

> mysqlbinlog mysql-bin.*
DELIMITER /*!*/;
at 4
#120331 0:52:23 server id 1 end_log_pos 240 Start: binlog v 4, server v 5.2.4-MariaDB-rpl-mariadb98~maverick-log
created 120331 0:52:23 at startup
Warning: this binlog is either in use or was not closed properly.
ROLLBACK/*!*/;
BINLOG '
Fyt2Tw8BAAAA7AAAAPAAAAABAAQANS4yLjQtTWFyaWFEQi1ycGwtbWFyaWFkYjk4fm1hdmVyaWNr
LWxvZwAAAAAAAAAAAAAXK3ZPEzgNAAgAEgAEBAQEEgAA2QAEGggAAAAICAgCAAAAAAAAAAAAAAAA
AA
AA
AAAAAAAAAAA=
'/*!*/;

• Yes, you can execute that statement against MySQL!
• MariaDB has SQL annotation of row based events.

18

SHOW SLAVE STATUS

mysql> show slave status\G
*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
Master_Host: server1
Master_User: repluser
Master_Port: 3306
...
Master_Log_File: server1-binlog.000008 <- io_thread (read)
Read_Master_Log_Pos: 436614719 <- io_thread (read)
Relay_Log_File: server2-relaylog.000007 <- io_thread (write)
Relay_Log_Pos: 236 <- io_thread (write)
Relay_Master_Log_File: server1-binlog.000008 <- sql_thread
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
...
Exec_Master_Log_Pos: 436614719 <- sql_thread
...

Seconds_Behind_Master: 0

19

So what is MySQL Replication?

• Statement based, or Row based (5.1+)

• Asynchronous

• Semi Synchronous plugin in 5.5+

• MySQL 5.6

• Global Transaction ID

• Server UUID

• Ignore (master) server-ids

• Per-schema multi-threaded slave

• Watch out for relay-log position with multiple slaves!
• Checksums

• Crash safe binlog and relay-log

• Delayed replication

• http://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html

• Due to the nature of replication, tools like pt-table-checksum and pt-table-sync are
important part of the picture!

20

MySQL 5.6 binary log

$ mysqlbinlog mysql-bin.000001
...
at 207
#120331 22:38:30 server id 1 end_log_pos 282 Query thread_id=1 exec_time=0
error_code=0
SET TIMESTAMP=1333222710/*!*/;
BEGIN
/*!*/;
at 282
#120331 22:38:30 server id 1 end_log_pos 377 Query thread_id=1 exec_time=0
error_code=0
SET TIMESTAMP=1333222710/*!*/;
insert into t1 values (1)
/*!*/;
at 377
#120331 22:38:30 server id 1 end_log_pos 404 Xid = 10
COMMIT/*!*/;

21

Semi sync vs Single node (memory bound)

Practically no performance overhead
Opportunity to relax sync_binlog setting (green - yellow)

22

Slave lag (disk bound)

With disk bound workload (data set > RAM), slave lag is common
In practice limits master throughput 50-90%
Slave-prefetch tools combat this well. See:
Yoshinori Matsunobu, Anders Karlsson, Percona Toolkit

Graph and benchmark (C) Yoshinory Matsunobu, Percona Live UK 2011
http://www.percona.com/files/presentations/percona-live/london-2011/PLUK2011-linux-and-hw-optimizations-for-mysql.pdf

23

So what is Tungsten Replicator?

• Replaces MySQL Replication

• MySQL writes binary log, Tungsten reads it and uses its
own replication protocol

• Global Transaction ID

• Per-schema multi-threaded slave

• Heterogeneous replication: MySQL <-> MongoDB <-> Pg

• Multi-master

• Including multiple masters to single slave

• Complex topologies

• Tungsten Enterprise

24

So what is Galera?

• Inside MySQL: a replication plugin (kind of)

• Supports InnoDB only

• Replaces MySQL replication (or you could use both)

• True multi-master, active-active

• Synchronous

• Still pretty good over WAN: 100 - 300 ms / commit

• Multi-threaded slaves, no limitation on use case

• No slave lag or integrity issues

• Automatic node provisioning

• Percona XtraDB Cluster is based on Galera

25

Single node

Baseline single node performance
"Group commit bug" when sync_binlog=1 & innodb_flush_log_at_trx_commit=1

 - Fixed in Percona Server 5.5, MariaDB 5.3 and MySQL 5.6

Wsrep api (Galera module, no replication) adds minimal overhead

26

3 node Galera cluster

Blue & Red: Baseline single node performance
Blue: "Group commit bug" when sync_binlog=1 &
innodb_flush_log_at_trx_commit=1
 - Fixed in Percona Server 5.5, MariaDB 5.3 and MySQL 5.6

No overhead in master-slave mode (red vs yellow)
Small benefit! in multi-master mode

27

Galera w disk bound workload (EC2)

20 GB data / 6 GB buffer pool
Significant read-write scale-out up to 4 nodes!

Graph and benchmark courtesy of and copyright Codership Oy
http://codership.com/content/scaling-out-oltp-load-amazon-ec2-revisited

28

So what is MySQL NDB Cluster?

• 3 node types: sql, data, and management.

• MySQL node provides an interface to the data, alternate API is
available: LDAP, Memcache, native NDB API

• Data nodes aka NDB storage engine.

• Note: Different features and performance compared to
InnoDB! (Consider training.)

• Transactions are synchronously written to 2 nodes (or more)
aka replicas.

• Transparent sharding:
Partitions = data nodes / replicas

• Automatic node provisioning, online re-partitioning
• Management node manages the cluster, used to start and stop

nodes, and take backups, etc.

29

So what is DRBD?

• Linux disk driver: "RAID over network"

• Pros:

• Transparent to application: Replicate anything

• Synchronous

• Cold-standby: Not possible to write to slave

• Cons:

• Performance overhead (see next slide)

• Single server, no scale-out

• But can be coupled with MySQL read-only slaves
• Failover time 1 minute or more

• Linux sysadmin skills vs MySQL DBA skills

30

DRBD vs Single node

60% of single node performance
Minimum latency 10x higher but average is not so bad (not shown)

Note: This is different HW than the Galera test, and different metric

2011-10-25

31

Summary of Replication Performance

• SAN has "some" latency overhead compared to
local disk. Can be great for throughput.

• DRBD = 50% performance penalty

• Replication, when implemented correctly, has 0
performance penalty
• But MySQL replication w disk bound data set has

single-threadedness issues!

• Galera & NDB = r/w scale-out
= more performance

32

Other

• Read-only, read-mostly databases

• Database sharding

• > Database partially unavailable
• Does it need to be in the database?

• Flat files
• Kind of replicas:

Caching, message queues, full-text engines

 33

Dealing with failures
aka

Clustering Frameworks

34

Dealing with failure

• Problem #1: How do we find out about failure?

• Polling, monitoring, alerts...

• Error returned to and handled in client side

• Problem #2: What should we do about it?

• Direct requests to the spare nodes (or datacenters)

• Problem #3: Not as easy as you'd think, remember to protect data
integrity:

• Master-slave is unidirectional: Must ensure there is only one
master at all times.

• DRBD and SAN have cold-standby: Must mount disks and start
mysqld.

• In all cases must ensure that 2 disconnected replicas cannot both
commit independently.

35

Clustering frameworks

Failover

• VIP points to Master
• External clustering suite

polls all nodes for
health

• In case of Master error,
move VIP to Slave

• + other management
tasks

• Solutions:
• Automated

Replication Failover
• Cluster Suites
• VM based

36

Automated Replication Failover

• When using MySQL replication

• MySQL-MMM, MySQL-MHA, Severalnines
• Tungsten Enterprise to manage Tungsten

Replicator
• Specialized solutions

• Understand MySQL and MySQL replication

37

So what is MySQL-MMM?

• You have to setup all nodes and replication manually

• MMM gives Monitoring + Automated and manual failover on top

• Architecture consists of Monitor and Agents

• Typical topology:
2 master nodes
Read slaves replicate from each master
If a master dies, all slaves connected to it are stale

• Support from Open Query and Percona

• Is there still a place for MMM?

• http://mysql-mmm.org/

38

MMM example

mmm_control show
 db1(192.168.0.31) master/ONLINE. Roles: writer(192.168.0.50), reader(192.168.0.51)
 db2(192.168.0.32) master/ONLINE. Roles: reader(192.168.0.52)
 db3(192.168.0.33) slave/ONLINE. Roles: reader(192.168.0.53)

mmm_control set_offline db1
OK: State of 'db1' changed to ADMIN_OFFLINE. Now you can wait some time and check
all roles!

mon:~# mmm_control show
 db1(192.168.0.31) master/ADMIN_OFFLINE. Roles:
 db2(192.168.0.32) master/ONLINE. Roles: writer(192.168.0.50), reader(192.168.0.52)
 db3(192.168.0.33) slave/ONLINE. Roles: reader(192.168.0.51), reader(192.168.0.53)

Courtesy and copyright of http://mysql-mmm.org/mysql-mmm.html

39

So what is Severalnines ClusterControl?

• Origin as automated deployment of MySQL NDB Cluster

• 4 node cluster up and running in 5 min!

• Now also supports

• MySQL replication and Galera

• Semi-sync replication

• Automated failover

• Manual failovers, status check, start & stop of node, replication, full
cluster... from single command line.

• Monitoring

• Topology: Pair of semi-sync masters, additional read-only slaves

• Can move slaves to new master

• Commercial closed source features: backup, online add node, rolling restart

• http://severalnines.com/

40

So what is MySQL-MHA?

• Like MMM, specialized solution for MySQL replication

• Developed by Yoshinori Matsunobu at DeNA
• Support from SkySQL

• Automated failover and manual failover

• Topology: 1 master, many slaves

• Choose new master by comparing slave binlog
positions

• Can be used in conjunction with other solutions

• http://code.google.com/p/mysql-master-ha/

41

So what is Tungsten Enterprise?

• Use with Tungsten Replicator

• Like "all of the above"

• Includes proxy / load balancer that can further protect
slaves from accidental writes, etc...

• Closed source, commercial

• http://continuent.com/

42

Cluster suites

• Heartbeat, Pacemaker, Red Hat Cluster Suite

• Generic, can be used to cluster any server
daemon

• Usually used in conjunction with Shared Disk or
Replicated Disk solutions

• Preferred choice
• Can be used with Replication.

• Robust, Node Fencing / STONITH

43

So what is Pacemaker?

• Heartbeat v1, Heartbeart v2, Pacemaker

• Heartbeat and Corosync

• Resource Agents, Percona-PRM

• http://www.clusterlabs.org/

• Percona Replication Manager

• Pacemaker agent specialized on MySQL
replication

• "Done right" (but not yet there?)
• https://launchpad.net/percona-prm

44

Sounds simple. What
could possibly go wrong?

• Old Master must stop service
(VIP, os, DB). But it is not
responding, so how do you make
it stop?

• Polling from the outside.
Interval = 1 sec, 10 sec, 60 sec!

• What if replication fails first and
client transactions don't?

• Polling connectivity of DB nodes
but not client p.o.v.

• Failover can be expensive (SAN,
DRBD) -> false positives costly

45

Load Balancers for Multi-Master clusters

Node failure

No "failover"

Synchronous Multi-Master
Clusters:
Galera
NDB

Load balancers:
HAProxy
JDBC/PHP Driver
Hardware (e.g. F5, Cisco)

Clustering Suites:
You could use VIP based
failover too, but why?

46

No failover needed

• What do you mean no
failover???
• Use a load balancer
• Application sees just one IP
• Write to any available node,

round-robin
• If node fails, just write to

another one
• What if load balancer fails?

-> Turtles all the way down

47

Load Balancer in JDBC/PHP client

• No Single Point of
Failure

• One less layer of
network components

• Is aware of MySQL
transaction states and
errors

• Variant: Load
balancer (like HA
proxy) installed on
each app node
> For other languages
than Java & PHP

48

Key takeaway: Is a clustering solution part
of the solution or part of the problem?

• "Causes of Downtime in Production MySQL Servers"

by Baron Schwartz:

• #1: Human error

• #2: SAN

• Complex clustering framework + SAN =

• More problems, not less!

• Galera and NDB =

• Replication based, no SAN or DRBD

• No "failover moment", no false positives

• No clustering framework needed (JDBC loadbalance)

• Simple and elegant!

 49

Choosing a solution that best
suits you

50

So we pick a HA solution and are done!

MySQ
L 5.0

MySQ
L 5.1

MySQ
L 5.5

MySQ
L 5.6

Tung
sten

Galer
a

DRBD SAN NDB

InnoDB

Usability

Performance

Asynchronous

Statement based

Row based

Semi-sync

Synchronous

Global trx id

Multi threaded

HA Options ?

51

InnoDB based?

InnoDB
We use InnoDB. We want to continue using InnoDB.

Which solutions support InnoDB?

NDB is it's own storage engine.

It's great. It can blow away all others in a benchmark.

But it's not InnoDB and is not considered here.

MySQ
L 5.0

MySQ
L 5.1

MySQ
L 5.5

MySQ
L 5.6

Tung
sten

Galer
a

DRBD SAN NDB

InnoDB + + + + + + + +

52

Replication type?

Competence:
Replication = MySQL DBA can manage
DRBD = Linux sysadmin can manage
SAN = Nobody can manage

Operations:
Disk level = cold standby = long failover
time
Replication = hot standby = short failover
time
++ for global trx id, easy provisioning

Performance:
SAN has higher latency than local disk
DRBD has higher latency than local disk
Replication has surprisingly little overhead

Redundancy:
Shared disk = Single Point of Failure
Shared nothing = redundant = good

Higher level replication is better
<------------ MySQL server level replication ----------> <- disk level-> <engine>

MySQ
L 5.0

MySQ
L 5.1

MySQ
L 5.5

MySQ
L 5.6

Tung
sten

Galer
a

DRBD SAN NDB

InnoDB + + + + + + + +

Usability + + + + ++ ++ - +

Performance (1) (1) + - - +

53

Statement vs Row based?
Asynchronous vs Synchronous?

MySQ
L 5.0

MySQ
L 5.1

MySQ
L 5.5

MySQ
L 5.6

Tung
sten

Galer
a

DRBD SAN NDB

InnoDB + + + + + + + +

Usability + + + + ++ ++ - +

Performance (1) (1) + - - +

Asynchronous + + + + + (2)

Statement based + + + + + +

Row based + + + + + (3) (3)

Semi-sync + +

Synchronous + + + +

Global trx id + + + +

Multi threaded (1) (1) + +

Row based = deterministic = good
Statement based = dangerous

Global trx id = easier setup & failover for
complex topologies

Asynchronous = data loss on failover
Synchronous = good

Multi-threaded = scalability

54

Clustering framework vs load balancing?

MySQ
L 5.0

MySQ
L 5.1

MySQ
L 5.5

MySQ
L 5.6

Tung
sten

Galer
a

DRBD SAN NDB

InnoDB + + + + + + + +

Usability + + + + + ++ - +

Performance (1) (1) + - - +

Asynchronous + + + + + (2)

Statement based + + + + + +

Row based + + + + + (3) (3)

Semi-sync + +

Synchronous + + + +

Global trx id + + + +

Multi threaded (1) (1) + +

Failover suite / LB + +
1) Multi-threaded slave, 1 per schema
2) No, but can be combined with MySQL replication
3) Reliability comparable to row based replication

55

Conclusions

• Simpler is better

• MySQL level replication is better than DRBD which is better than SAN

• Synchronous replication = no data loss

• Asynchronous replication = no latency (WAN replication)

• Synchronous Multi-Master = no failover = no clustering frameworks

• Multi-threaded slave increases performance in disk bound workload

• Global trx id, autoprovisioning increases operations usability

• Galera (and NDB) provides all these with good performance and stability

56

References

• http://openlife.cc/blogs/2011/july/ultimate-mysql-high-availability-solution

• http://openlife.cc/category/topic/galera

• http://openlife.cc/blogs/2011/may/drbd-and-semi-sync-shootout-large-server

• http://www.percona.com/about-us/white-papers/

• http://www.mysqlperformanceblog.com/2011/09/18/disaster-mysql-5-5-flushing/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

